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Abstract—Accurate channel estimation is essential to empower
extremely large-scale MIMO (XL-MIMO) with ultra-high spectral
efficiency in 6G networks. With the sharp increase in the antenna
array aperture of the XL-MIMO system, the electromagnetic
propagation field will change from far-field to near-field. Un-
fortunately, due to the near-field effect, the existing near-field
XL-MIMO channel model mismatches the practical mixed line-
of-sight (LoS) and non-line-of-sight (NLoS) channel feature. In
this paper, a mixed LoS/NLoS near-field XL-MIMO channel
model is proposed to accurately describe the LoS and NLoS
path components simultaneously, where the LoS path component
is modeled by the geometric free space propagation assumption
while NLoS path components are modeled by the near-field array
response vectors. Then, to define the range of near-field for XL-
MIMO, the MIMO Rayleigh distance (MIMO-RD) is derived.
Next, a two stage channel estimation algorithm is proposed,
where the LoS path component and NLoS path components are
estimated separately. Numerical simulation results demonstrate
that, the proposed two stage scheme is able to outperform the
existing methods.

Index Terms—6G, extremely large-scale MIMO, channel esti-
mation, near-field.

I. INTRODUCTION

To achieve higher spectral efficiency, the extremely large-

scale MIMO (XL-MIMO) is regarded as one of the most

important technology for 6G [1], [2]. Since the antenna array

aperture of XL-MIMO is very large, the receiver is more likely

to lie in the near-field region of the transmitter, which is

usually defined by the Rayleigh distance (RD) [3]. The RD

is proportional to the square of the array aperture D and the

inverse of wavelength 1
λ . As the antenna number dramatically

increases in XL-MIMO systems, the near-field range can be up

to several hundreds of meters. In this case, the existing far-field

channel estimation methods suffer from serious performance

loss in the near-field XL-MIMO channel model. Thus, it is

important to delicately model the XL-MIMO channel and

design a near-field channel estimation scheme by analyzing the

propagation property in the near-field XL-MIMO scenario [4].
The existing near-field channel estimation methods can be

divided into two categories, i.e., MISO channel estimation [5],

[6] and MIMO channel estimation. For the first category, the

near-field MISO channel is modeled based on a near-field

array response vector accurately, which relates not only to

the angle but also to the distance due to the spherical wave

assumption. Under this channel model, in [5], the whole two-

dimensional plane is uniformly divided into multiple grids, and

then the corresponding transform matrix can be constructed by

multiple near-field array response vectors. With the constructed

transform matrix, the near-field channel shows sparsity in the

transform domain, which can be estimated by compressive

sensing (CS)-based methods with low pilot overhead. The

authors of [6] proved that the distance should be non-uniformly

divided to reduce the correlation among the near-field array

response vectors of the transform matrix. Based on the im-

proved transform matrix, a new sparse representation in the

polar-domain is proposed in [6] for XL-MIMO to increase the

estimation accuracy.

The second category is based on the near-field XL-MIMO

scenario, where the transmitter employs an extremely large-

scale antenna array (ELAA) that serves receivers with multiple

antennas or even an ELAA. For instance, an ELAA is installed

on the top of a train [7], and the transmitter also deploys an

ELAA. The authors of [8] draw on the experience of the far-

field MIMO channel model and construct the near-field MIMO

channel as the product of the transmitter and receiver near-field

array response vectors. By utilizing the sparsity in the polar-

domain, the CS-based method can be applied to the channel

estimation problem under this channel model.

However, the existing near-field XL-MIMO channel model

cannot accurately describe the near-field line-of-sight (LoS)

path component. The reason is explained as below. In the far-

field scenario, the transmitter with a small-aperture antenna

array can be viewed as a point from the receiver and vice versa,

where the transmitting and receiving processes are equivalent

to two MISO propagation processes. Thus, the LoS path

component can be represented by the product of transmitter

and receiver array response vectors in the far-field scenario.

However, in a near-field XL-MIMO system, due to the large

aperture of ELAA, the receiver cannot be viewed as a point

from the transmitter and vice versa. In this case, the existing

near-field XL-MIMO channel model based on near-field array

response vectors mismatches the practical XL-MIMO scenario

in practice. Unfortunately, to the best of our knowledge, there is

no study of this problem for XL-MIMO in the current literature.

To fulfill this gap, an accurate mixed LoS/NLoS near-field

XL-MIMO channel model is first proposed, where the LoS

path components and NLoS path components are modeled

separately. Based on the proposed channel model, we derive the

MIMO Rayleigh distance (MIMO-RD). Then, a two stage XL-
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MIMO channel estimation scheme is proposed for the mixed

LoS/NLoS near-field XL-MIMO channel model. Finally, we

provide numerical simulation results to illustrate the effective-

ness of our scheme.

II. SYSTEM MODEL

In this section, the signal model of the near-field XL-MIMO

system used in this paper will be introduced first. Then, we

will review the existing near-field XL-MIMO channel model.

A. Signal Model

We consider that the transmitter and receiver are equipped

with N1-element and N2-element antenna arrays, respectively.

Since the antenna arrays are usually implemented in a digital-

analog hybrid manner with a few RF (radio frequency) chains,

we assume that RF chain numbers of the transmitter and

receiver are NRF
t and NRF

r . Let H ∈ C
N2×N1 denotes the

channel from transmitter to receiver. The corresponding signal

model can be presented as

ym = WHQsm + nm, (1)

where ym ∈ C
NRF

r ×1, W ∈ C
NRF

r ×N2 , Q ∈ C
N1×NRF

t and

sm ∈ C
NRF

t ×1 denote the received pilots signal, combining

matrix, the hybrid precoding matrix, and transmitted signal

in m-th times slots, and nm ∼ CN (
0, σ2INRF

r

)
denotes the

NRF
r × 1 received noise with σ2 representing the noise power

after combining in the m-th times slots.

Denote pm = Qsm ∈ C
N1×1, where the i-th element of the

pm is the signal transmitted by the i-th antenna at transmitter

in m-th time slots. By collecting the received pilots in M time

slots, we have

Y = WHP+N, (2)

where Y = [y1,y2, . . . ,yM ], and P = [p1,p2, . . . ,pM ] and

N = [n1,n2, . . . ,nM ]. Y ∈ C
NRF

r ×M , W ∈ C
NRF

r ×N2 and

P ∈ C
N1×M denote the received pilots signal, combining

matrix and the transmitted pilots signal in M times slots in a

coherence interval, and N ∼ CN (
0, σ2INRF

r
⊗ IM

)
denotes

the N2 ×M received noise with σ2 representing the noise

power in M times slots. In channel estimation problem, we

need to estimate H with given P, W and Y. To reduce the

pilot overhead in a practical communication system, the chan-

nel estimation scheme with low overhead should be utilized

(M < N1).

B. Existing Near-Field XL-MIMO Channel Model

For the existing near-field XL-MIMO channel model, similar

to the far-field array response vectors based XL-MIMO channel

model, the near-field array response vectors are utilized to re-

place the far-field array response vectors [8], which is presented

as

H =
L∑

l=1

glb(θ
l
r, d

l
r)b

H(θlt, d
l
t), (3)

where L denotes the number of path components, gl represents

the complex gain. b(θlt, d
l
t) and b(θlr, d

l
r) denote the near-field

array response vectors at transmitter and receiver on the base

of spherical wave assumption, which is denoted by

b(θlt, d
l
t) =

1√
N1

[e−j 2π
λ (dl

t(1)−dl
t), · · · , e−j 2π

λ (dl
t(N1)−dl

t)]H ,

b(θlr, d
l
r) =

1√
N2

[e−j 2π
λ (dl

r(1)−dl
r), · · · , e−j 2π

λ (dl
r(N2)−dl

r)]H ,

(4)

where θlt (θ
l
r) represent the angle for the l-th path at transmitter

(receiver), and dlt (d
l
r) represent the distance of the l-th scatterer

from the center of the antenna array of transmitter (receiver)

for the l-th path, dlt(n1) =
√
dlt

2
+ δ2n1

d2 − 2dltδn1
dsin θlt rep-

resents the distance of the l-th scatterer from the n1-th element

on transmitter antenna array, and δn1 = 2n1−N1−1
2 with n =

1, 2, · · · , N1, and dlr(n2) =
√

dlr
2
+ δ2n2

d2 − 2dlrδn2
dsin θlr

represents the distance of the l-th scatterer from the n2-th

transmitter antenna array, and δn2
= 2n2−N2−1

2 with n =
1, 2, · · · , N2.

The polar-domain transform matrices can be presented as

Dt = [b(θ1, d
1
1), · · · ,b(θ1, dS1

1 ), · · · ,b(θN1 , r
SN1

N1
)],

Dr = [b(θ1, r
1
1), · · · ,b(θ1, dS1

1 ), · · · ,b(θN2 , r
SN2

N2
)],

(5)

where each column of the matrix Dt (Dr) is a near-field

array response vector sampled at angle θn1
(θn2

) and distance

d
sn1
n1 (d

sn2
n2 ), with sn = 1, 2, · · · , Sn1(Sn2). Sn1(Sn2) denotes

the number of sampled distances at the sampled angle θn1(θn2).
Therefore, we can calculate the total number of all sampled

grids, i.e., the number of Dt (Dr) columns, which can be

presented as S1 =
N∑

n1=1
Sn1

(S2 =
N∑

n2=1
Sn2

).

On the base of this polar-domain transform matrix Dt and

Dr, the channel H can be represented by

H = DrH
PDH

t , (6)

where HP is the S2 × S1 polar-domain XL-MIMO channel,

which also shows sparsity in the polar-domain.

This model is not suitable for the LoS path component in

a near-field XL-MIMO scenario. Thus, in order to design the

channel estimation algorithm for the XL-MIMO scenario, we

should first provide an accurate description of the LoS path

component, which will be described in Section III.

III. THE PROPOSED MIXED LOS/NLOS NEAR-FIELD

XL-MIMO CHANNEL MODEL

In this section, we will first utilize the free space propaga-

tion assumption to accurately model the LoS path component

for each transmitter-receiver antenna pair. Then, the mixed

LoS/NLoS near-field XL-MIMO channel model is provided to

capture the different features of LoS and NLoS path compo-

nents, which are modeled separately.
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Fig. 1. The proposed near-field channel model for XL-MIMO.

A. LoS Path Component

For the near-field XL-MIMO LoS path component, each

transmitter-receiver antenna pair will experience different pro-

rogation paths as shown in Fig. 1. Thus, in this case, the

channel model built with the near-field array response vectors

mismatches the practical feature of XL-MIMO near-field LoS

path component. As a result, instead of utilizing near-field array

response vectors like NLoS path components, we model the

LoS path component under the geometric free space prop-

agation assumption [9] for each transmitter-receiver antenna

pair. Specifically, H(n2, n1) denotes the LoS path component

of channel between the transmitter’s n1-th antenna and the

receiver’s n2-th antenna, which can be represented as

H(n2, n1) =
1

rn2,n1

e−j 2π
λ rn2,n1 , (7)

where rn2,n1
denotes the distance of the n1-th antenna at

receiver from the n2-th antenna at transmitter. The rn2,n1
can

be represented as

rn2,n1
=
√
r2+d21+d22+2rd2sin(ϕ+θ)−2rd1sin θ−2d1d2cosϕ

(8)

where the r is the distance of the 1-st antenna at receiver from

the 1-st antenna at transmitter, ϕ denotes relative angle between

receiver and transmitter, and θ denotes the angle of departure

(AoD) of the signal. Thus, by utilizing geometry relation in

free space, the channel can be presented as

HLoS = HLoS(r, θ, ϕ) =

[
1

rn2,n1

e−j2πrn2,n1
/λ

]
N2×N1

, (9)

Unlike the NLoS path components, the LoS path component

cannot be decoupled by near-field array response vectors. Thus,

the LoS path component cannot be presented by polar-domain

channel with transform matrices.

Fig. 2. The near-field MIMO scenario: antenna array elements (orange squares)
in the x-y coordinate system

B. Proposed Mixed LoS/NLoS Near-Field XL-MIMO Channel

In order to capture both LoS and NLoS path components

features, we propose a mixed LoS/NLoS near-field XL-MIMO

channel model based on (6) and (9). The proposed XL-MIMO

channel model can be presented:

H = HLoS +HNLoS

= HLoS(r, θ, ϕ) +Dr

(
L∑

l=1

glb
(
θlr, d

l
r

)
bH

(
θlt, d

l
t

))
DH

t .

(10)

IV. THE DEFINITION OF RAYLEIGH DISTANCE FOR

NEAR-FIELD XL-MIMO

In this section, we will define the MIMO Rayleigh dis-

tance (MIMO-RD) to determine the the boundary between

the proposed mixed LoS/NLoS near-field XL-MIMO channel

model and far-field MIMO channel model. As described in

[3], the RD for a MISO scenario, i.e., MISO-RD, is defined as

Z = 2D2/λ, where D is the aperture of the antenna array and

λ is the wavelength. MISO-RD is calculated by the condition

that the largest phase discrepancy between the far-field planar

wavefront and the near-field spherical wavefront in the free

space is no more than π/8. However, the current MISO-RD

is identified based on the scenario where only the transmitter

employs the ELAA while the receiver is equipped with a

single antenna. In this paper, by considering the XL-MIMO

scenario, MIMO Rayleigh distance (MIMO-RD) is defined by

the condition that the largest phase discrepancy between the far-

field planar wavefronts and the near-field spherical wavefronts

is no more than π/8.

As shown in Fig. 2, we consider the scenario where the

transmitter and receiver are both equipped with antenna arrays

of aperture D1 and D2, respectively. These two antenna arrays

are set in parallel since the largest phase discrepancy occurs
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when the wave impinges perpendicularly [10]. The center of

transmitter antenna arrays is regarded as the x− y coordinate

origin. The coordinate of the n1-th antenna of the transmitter

antenna array, the center of receiver antenna array, the n2-th

antenna of the receiver antenna array are (0, d1), (x2, y2), and

(x2, y2+d2), respectively, where −D1

2 ≤ d1 ≤ D1

2 and −D2

2 ≤
d2 ≤ D2

2 . The polar coordinate of the center of UE’s antenna

array can be written as (r, θ) =
(√

x2
2 + y22 , arctan(

y2

x2
)
)

,

where r, θ are the distance and angle between the center of

transmitter’s antenna array and the center of receiver’s antenna

array, respectively.
We only consider the phase change caused by LoS path

component of the channel. As mentioned in (7), H(n2, n1) =
1

rn2,n1
e−j2πrn2,n1/λ represents the LoS path component of

channel between the transmitter’s n1-th antenna and the re-

ceiver’s n2-th antenna. rn2,n1 is the distance of the transmitter’s

n1-th antenna from the receiver’s n2-th antenna. Here, the true

phase is φ = 2π
λ rn2,n1

, where rn2,n1
is presented as

rn2,n1 =
√

x2
2 + (y2 + d2 − d1)2

= r

√
1 +

(d2 − d1)2

r2
+

2(d2 − d1) sin θ

r
.

(11)

where θ is the practical physical angle of departure. Specifi-

cally, by utilizing the second-order Taylor expansion
√
1 + x ≈

1 + 1
2x− 1

8x
2 +O(x2), we have

rn2,n1 ≈ r + (d2 − d1) sin θ +
(d2 − d1)

2 cos2 θ

2r
. (12)

Based on the far-field assumption, rn2,n1
can be approxi-

mated by its first-order Taylor expansion, where

rfar
n2,n1

≈ r(1 +
(d2 − d1) sin θ

r
) = r + (d2 − d1) sin θ (13)

Thus, the far-field phase becomes φfar = 2π
λ rfar

n2,n1
. Accord-

ingly, the phase discrepancy between the far-field planar and

near-field spherical wavefronts can be presented as

Δ =
∣∣φn2,n1

− φfar
n2,n1

∣∣ = 2π

λ

∣∣rn2,n1
− rfar

n2,n1

∣∣ (14)

Notice that rfar
n2,n1

in (13) is the first-order Taylor expansion

of rn2,n1
, so

∣∣rn2,n1
− rfar

n2,n1

∣∣ in (14) is mainly determined by

the second-order Taylor expansion term of rn2,n1
. Therefore,

the phase discrepancy between planar wavefronts and spherical

wavefronts is

Δ ≈ π(d2 − d1)
2 cos2 θ

λr
. (15)

It can be observed that when θ = 0, d1 = D1

2 (−D1

2 ) and

d2 = −D2

2 (D2

2 ), phase discrepancy achieves maximum, where

max
π(d2 − d1)

2 cos2 θ

λr
=

π(D1 +D2)
2

4rλ
. (16)

Finally, since the largest phase discrepancy is larger than

π/8 in the near-field region, we have

r ≤ 2(D1 +D2)
2

λ
. (17)

Thus, the MIMO-RD can be defined as 2(D1 +D2)
2/λ.

V. PROPOSED TWO STAGE CHANNEL ESTIMATION

ALGORITHM

In this section, based on the proposed mixed LoS/NLoS near-

field XL-MIMO channel model, we propose the two stage near-

field XL-MIMO channel estimation algorithm.

A. Stage 1: LoS Path Component Estimation

Since the energy of the LoS path component is usually dom-

inant, we will first conduct the LoS path component estimation.

From (9), we can observe that the LoS path component of near-

field MIMO channel is determined by three parameters, i.e., the

distance of the 1-st antenna at receiver from the 1-st antenna at

transmitter r, relative angle between receiver and transmitter ϕ,

and the AoD θ. Therefore, the LoS path component estimation

of (2) can be recognized as a parameter estimation problem,

which can be presented as

min
r,θ,ϕ

G(r, θ, ϕ)
Δ
=‖Y −WHLoS(r, θ, ϕ)P‖2F . (18)

Algorithm 1 shows the procedure to solve the problem (18).

Algorithm 1 LoS path component estimation

Inputs: Received signal Y, pilot P, Rmax, Rmin, θmax, θmin,

ϕmax, ϕmin, rs, θs, ϕs, I .

Initialization: Δr1 = rmax−rmin

rs
, Δθ1 = θmax−θmin

θs
, Δϕ1 =

ϕmax−ϕmin

ϕs
, calculate Ξ based on (19)

// Estimate coarse on-grid parameters

1. for (r, θ, ϕ) ∈ Ξ do
2. calculate H∗

LoS based on (9)

3. rint, θint, ϕint = argmin
r,θ,ϕ

‖Y −HLoSP‖22
4. end for
// Refine off-grid parameters

5. for i ∈ I do
6. update r̂(i+1) based on (21)

7. update θ̂(i+1) based on (22)

8. update ϕ̂(i+1) based on (23)

9. end for
10. (ropt, θopt, ϕopt) = (r̂(I), θ̂(I), ϕ̂(I))
11. calculate ĤLoS based on (9) by (ropt, θopt, ϕopt)
Output: Estimated LoS path component ĤLoS.

First, in Steps1-4 we obtain on-grid coarse parameters by

searching the collection Ξ, which can be presented as

Ξ = {(r, θ, ϕ) |r = rmin, rmin +Δr, · · · , rmax;

θ = θmin, θmin +Δθ, · · · , θmax;

ϕ = ϕmin, ϕmin +Δϕ, · · · , ϕmax},
(19)

where rmin, rmax, θmin, θmax, ϕmin, and ϕmax represent the

lower and upper boundaries of r, ϕ, and θ, respectively. Δr,

Δθ, and Δϕ are the step sizes of r, θ, and ϕ.

After searching the collection Ξ, we can get rint, θint, ϕint

as the initial on-grid estimated parameters. Then, to obtain

the accurate estimated parameters, we refine three parameters

rint, θint, ϕint by iterative optimization method. Specifically,

we define the objective function G(r, θ, ϕ) as
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min
r,θ,ϕ

G(r, θ, ϕ) =

M∑
m=1

pH
mHHWHWHpm

−
M∑

m=1

(
pH
mHHWHym+

(
pH
mHHWHym

)H)
,

(20)

where the
∑M

m=1 y
H
mym can be ignored since the ym is fixed

received signal.

The objective function G(r, θ, ϕ) can be optimized with

an iterative gradient descent approach methods. In the i-th
iteration, we need to calculate new estimated r̂(i+1), θ̂(i+1),

and ϕ̂(i+1), which can be updated as

r̂(i+1) = r̂(i) − ηr · ∇rG
(i)
opt

(
r̂(i), θ̂(i), ϕ̂(i)

)
. (21)

θ̂(i+1) = θ̂(i) − ηθ · ∇θG
(i)
opt

(
r̂(i), θ̂(i), ϕ̂(i)

)
. (22)

ϕ̂(i+1) = ϕ̂(i) − ηϕ · ∇ϕG
(i)
opt

(
r̂(i), θ̂(i), ϕ̂(i)

)
. (23)

ηr, ηθ, ηϕ denote the lengths of step for the distance

and angles to guarantee the G
(i)
opt

(
r̂(i+1), θ̂(i+1), ϕ̂(i+1)

)
≤

G
(i)
opt

(
r̂(i), θ̂(i), ϕ̂(i)

)
. The iteration process will suspend until

reaching the largest iteration number.

Based on the
(
r̂(I), θ̂(I), ϕ̂(I)

)
, we can obtain the estimated

ĤLoS by (9). Then, we can eliminate the influence of ĤLoS

on the received pilots Y and then estimate the ĤNLoS, which

is shown as follows.

B. Stage 2: NLoS Path Components Estimation

As we already acquire ĤLoS, the received pilots without the

effect of ĤLoS can be presented as

YNLoS = Y −WĤLoSP. (24)

On the base of the polar-domain representation (6), the YNLoS

can be presented as

YNLoS = WHNLoSP+N = WDrH
P
NLoSD

H
t P+N. (25)

As mentioned above, HP
NLoS is sparse in polar-domain,

thus the NLoS path components estimation is reformulated as

a sparse recovery problem. In this sparse recovery problem,

the NLoS path components sensing matrix at transmitter and

receiver sides can be denoted as At = DH
t P and Ar = WDr.

The matrix OMP-based algorithm to solve this problem can be

summarized in Algorithm 2.

Specifically, since there are L components in the polar-

domain, we will conduct L iterations to find L supports in

transmitter sensing matrix At and L supports in receiver

sensing matrix Ar. In l-th iteration, we will calculate the

correlation between the transmitter and receiver sensing ma-

trices At, Ar and the residual matrix R. In Step 4, we obtain

the updated support Ω, Ω1, Ω2, where Ω1, Ω2 denote the

support of transmitter and receiver sides. Then, in Step 6,

the currently estimated near-field NLoS path component ĥA

is calculated by the least square (LS) algorithm. In Step 7, the

ĥA need to be reshaped into ĤA in the polar-domain of the size

Algorithm 2 NLoS path components estimation

Inputs: YNLoS, P, W, Dr, Dt, L.

Initialization: Ω1 = ∅, Ω2 = ∅, Ω = ∅, A = 0S1S2×1, R =
YNLoS, At = DH

t P, Ar = WDr,

1. for l = 1, 2, · · · , L do
2. n∗ = argmax‖vec(Ar

HRAt
H)‖22

3. n1 = floor((n∗−1)/N2)+1, n2 = mod (n∗−1, N2)+1
4. Ω = Ω

⋃
n∗, Ω1 = Ω

⋃
n1, Ω2 = Ω

⋃
n2

5. A =
[
A At (Ω1, :)

H ⊗Ar (:,Ω2)
]

6. ĥA(Ω) = (AHA)−1AHvec(YNLoS)
7. reshape ĥA into ĤA of size S2 × S1

8. R = YNLoS −ArĤAAt

9. end for
10. ĤNLoS = DrĤAD

H
t

Output: Estimated NLoS path components ĤNLoS.

S2 × S1. Finally, after L iterations are performed, we obtain

the estimated NLoS path components ĤNLoS.
After estimating the near-field LoS path component and the

NLoS paths components, the Ĥ can be written as

Ĥ = ĤLoS + ĤNLoS. (26)

C. Computational Complexity Analysis
The computational complexity of the proposed two stage

channel estimation algorithm can be analyzed as follows. In the

stage of the LoS path component estimation, we can observe

that the complexity comes from two parts, i.e., coarse on-

grid estimation and refining processes. In Steps 1-4, for coarse

on-grid estimation, we need to compute the H∗
LoS according

to (9) in parameters collection, where the complexity of this

part is O (
SLoS

(
NRF

r N1N2 +NRF
r N1M

))
, where SLoS is

the size of the parameters collection. Then, for the refining

process in Steps 5-9, the complexity is introduced by the

gradient calculation. The complexity to calculate gradients

O(MI(NRF
r N1N2 + NRF

r N1 + NRF
r N2 + N2N1 + NRF

r )).
Since the N1, N2 is usually much larger than NRF

r and M ,

the complexity of the gradient calculation can be presented as

O (
(SLoS +MI)NRF

r N1N2

)
. For the NLoS path components

estimation, the computational complexity can be obtained as

O(N1N2(S1 +S2)L) by referring to the OMP algorithm [11].

VI. SIMULATION RESULT

In this section, we conduct the simulations to verify the

performance of the proposed two stage channel estimation

algorithm for the proposed mixed LoS/NLoS near-field XL-

MIMO channel model. The system parameters are as follows:

the number of antenna of transmitter and receiver are N1 = 256
and N2 = 128. The carrier frequency is f = 50 GHz,

corresponding to λ = 0.006m. By utilizing (17), the MIMO-

RD can be calculated as
2(D1+D2)

2

λ = 442.7m in this scenario.

The near-field channel in (3) contains L = 3 NLoS path

components. Meanwhile, the sampled angles of arrival follow

the uniform distribution U (−π
3 ,

π
3

)
.

Fig. 3 depicts the NMSE performance comparison with

respect to the distance of the transmitter from the receiver. The
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MIMO-RD = 

Fig. 3. NMSE performance comparison with respect to the distance of the
transmitter from the receiver.

range of distance is from 50 m to 500 m. The SNR is 5dB

and the size of pilot matrix is 256 × 128. The proposed two

stage method can achieve better NMSE performance than the

existing far-field codebook based OMP method [11] and the

near-field codebook based OMP method [6]. Furthermore, we

can observe that the MIMO-RD can capture the turning point

of performance loss between the proposed two stage scheme

and the far-field codebook based OMP scheme. Specifically,

when the distance is larger than 442.7m, the performance of

the proposed two stage scheme and the far-field codebook

based OMP channel estimation show the same performance.

The reason is that when the distance is larger than MIMO-

RD, the proposed channel model degenerates into the far-field

channel model.
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dB
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Far-field codebook based OMP [6]
Near-field codebook based OMP [11]
Proposed two stage algorithm

Fig. 4. NMSE performance comparison with respect to the SNR under r =
60m.

Fig. 4 shows the NMSE performance comparison with

respect to the SNR under different distances, the proposed

scheme can achieve about 4 dB improvement compared with

the near-field codebook based OMP scheme when SNR= 0 dB.

The reason is that the existing near-field codebook based OMP

schemes cannot deal with the LoS path component of the

practical near-field XL-MIMO channel.

VII. CONCLUSIONS

In this paper, the channel estimation of the near-field XL-

MIMO scenario was investigated. We proposed the mixed

LoS/NLoS near-field XL-MIMO channel model, where the LoS

and NLoS path components were characterized by geometric

free space propagation assumption and the near-field response

vectors, respectively. Then, we derived the range of the near-

field region of XL-MIMO, i.e., MIMO-RD. Simulation results

showed that, the proposed two stage channel estimation scheme

achieved better NMSE performance than existing methods.
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